## **VOIES NAVIGABLES DE FRANCE**



## PROJET DE MISE A GRAND GABARIT DE LA LIAISON FLUVIALE ENTRE BRAY-SUR-SEINE ET NOGENT-SUR-SEINE

## Analyse des sédiments prélevés sur la Petite Seine en 2011.

Cette note complémentaire vise à répondre à la demande formulée au cours de la réunion publique du débat Crue Seine Bassée de Marolles-sur-Seine, le 1<sup>er</sup> décembre 2011. Elle présente le résultat des analyses réalisées sur les sédiments extraits de l'eau en 2011 sur le secteur de la Petite Seine, entre Marolles-sur-Seine et Nogent-sur-Seine.

\*\*\*

VNF réalise régulièrement des campagnes de dragage d'entretien du chenal de navigation afin de garantir des conditions de navigation conformes à ce qui est indiqué dans les avis à batellerie<sup>1</sup>.

Depuis 2010, la réglementation française a classé les sédiments extraits de l'eau en déchets.

Conformément à la règlementation, avant d'entreprendre des chantiers de dragage, des sédiments sont prélevés et analysés. Ces analyses sont réalisées par un laboratoire mandaté par VNF et agréé par le COFRAC<sup>2</sup>. Elles sont menées pour connaître la classification des sédiments. En fonction de celle-ci, les sédiments peuvent être valorisés (restructuration de terres agricoles, remblaiements...) s'ils sont considérés comme inertes<sup>3</sup>. Si les sédiments sont non inertes ou s'il n'y a pas de valorisation possible, ils seront orientés vers des centres de dépôts spécifiques.

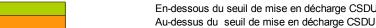
En France, trois catégories de dépôts existent :

- pour sédiments dangereux (Centre de Stockage de Déchets Ultimes de classe 1 (CSDU 1));
- pour sédiments non inertes non dangereux (ou « banals ») (CSDU2);
- pour sédiments inertes(CSDU 3).

Au cours de l'année 2011, dix prélèvements ont été réalisés entre Nogent-sur-Seine et Marolles-sur-Seine. Les résultats détaillés sont présentés dans le tableau ci-dessous.

Pour en faciliter la lecture, voici un exemple : les sédiments à Nogent-sur-Seine contenaient moins de 0,035 mg de PCB par kg de sédiment, alors que la limite maximum pour une mise en décharge de catégorie 3 (déchets inertes) est de 1 mg

En résumé, les résultats détaillés dans le tableau joint montrent que les 10 prélèvement effectués ont été considérés comme inertes. Les sédiments extraits de l'eau peuvent donc être valorisés ou mis en décharge de type CSDU3, ils relèvent donc des catégories les moins dangereuses.


<sup>1</sup> Avis à batellerie : Un avis à batellerie contient l'ensemble des informations de nature technique ou réglementaire concernant la navigation sur un secteur donné. L'ensemble des avis sont consultables sur le site <a href="https://www.vnf.fr">www.vnf.fr</a>

<sup>2</sup> COFRAC : Comité Français d'accréditation – Association ayant pour but d'accréditer en France des organismes étatiques ou privés

 $<sup>{\</sup>it 3}\ {\it Un}\ d\'{e}chet\ inerte\ est\ un\ d\'{e}chet\ qui\ ne\ subit\ aucune\ modification\ physique,\ chimique\ ou\ biologique\ importante.$ 

|                                                   |               | Paramètres                          | unité                | Seuils CSDU | Prélèvement 1   | Prélèvement 2    | Prélèvement 3   | Prélèvement 4    | Prélèvement 5      | Prélèvement 6    | Prélèvement 7    | Prélèvement 8  | Prélèvement 9   | Prélèvement 10     |
|---------------------------------------------------|---------------|-------------------------------------|----------------------|-------------|-----------------|------------------|-----------------|------------------|--------------------|------------------|------------------|----------------|-----------------|--------------------|
|                                                   | Famille       |                                     |                      |             | NOGENT / SEINE  | SILO             | BEAULIEU        | LA MOTTE TILLY   | LE PORT<br>MONTAIN | JAULNES          | BAZOCHES         | GRAVON         | LA TOMBE        | MAROLLES -<br>Aval |
| Test sur le<br>Sédiment brut                      | MET TOT       | Arsenic total                       | mg/kg MS             | <10         | 3,700           | <2,6             | <2,6            | <2,6             | 2,600              | <2,6             | <2,6             | 3,600          | <2,6            | <2,6               |
|                                                   |               | Cadmium total                       | mg/kg MS             | <2          | <0,5            | <0,5             | <0,5            | <0,5             | <0,5               | <0,5             | <0,5             | <0,5           | <0,5            | <0,5               |
|                                                   |               | Chrome total                        | mg/kg MS             | <65         | 30,800          | <2,6             | 10,800          | 13,500           | <2,6               | 4,700            | <2,6             | <2,6           | <2,6            | <2,6               |
|                                                   |               | Cuivre total                        | mg/kg MS             | <400        | 17,200          | <5,2             | <5,2            | <5,2<br>0.047    | <5,1               | <5,2             | <5,2<br><0,026   | <5,1           | <5,2            | <5,1               |
|                                                   |               | Mercure total Nickel total          | mg/kg MS             | <1<br><70   | 0,094<br>11,000 | <0,026<br><2,6   | 0,031<br>6,200  | 7,300            | <0,026<br><2,6     | <0,026<br>3,600  | <2,6             | <0,026<br><2,6 | <0,026<br>3,100 | <0,026<br><2,6     |
|                                                   |               | Plomb total                         | mg/kg MS<br>mg/kg MS | <85         | 16,200          | <5,2             | <5,2            | 5,700            | <5,1               | <5,2             | <5,2             | <5,1           | <5,2            | <5,1               |
|                                                   |               | Zinc total                          | mg/kg MS             | <400        | 67,400          | 22,500           | 35,100          | 38.000           | 21,100             | 12,500           | 21,400           | 23,100         | 19,800          | 16,400             |
|                                                   | РСВ           | PCB 28                              | mg/kg MS             | 1700        | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 52                              | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 101                             | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 118                             | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 138                             | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 153                             | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | PCB 180                             | mg/kg MS             |             | <0,005          | <0,005           | <0,005          | <0,005           | <0,005             | <0,005           | <0,005           | <0,005         | <0,005          | <0,005             |
|                                                   |               | Somme des 7 PCB identifiés          | mg/kg MS             | <1          | <0,035          | <0,035           | <0,035          | <0,035           | <0,035             | <0,035           | <0,035           | <0,035         | <0,035          | <0,035             |
|                                                   | HAP           | Acénaphtylène                       | mg/kg MS             |             | <0,010          | <0,010           | <0,010          | <0,010           | <0,010             | <0,010           | <0,010           | <0,010         | <0,010          | <0,010             |
|                                                   |               | Fluoranthène                        | mg/kg MS             |             | 0,258           | 0,041            | 0,399           | 0,285            | 0,034              | <0,010           | 0,079            | 0,402          | 0,129           | 0,091              |
|                                                   |               | Benzo (b) fluoranthène              | mg/kg MS             |             | 0,216           | 0,028            | 0,290           | 0,226            | 0,027              | <0,010           | 0,043            | 0,343          | 0,061           | 0,050              |
|                                                   |               | Benzo( k) fluoranthène              | mg/kg MS             |             | 0,080           | 0,013            | 0,109           | 0,083            | 0,011              | <0,010           | 0,019            | 0,133          | 0,029           | 0,022              |
|                                                   |               | Benzo (a) pyrène                    | mg/kg MS             |             | 0,154<br>0,127  | 0,022<br>0,013   | 0,231<br>0,174  | 0,179<br>0,136   | 0,020<br>0,020     | <0,010<br><0,010 | 0,035<br>0,024   | 0,266<br>0,200 | 0,056<br>0,030  | 0,038<br>0,092     |
|                                                   |               | Benzo (ghi) Pérylène                | mg/kg MS             |             | 0,127           | 0,013<br>0,011   | 0,174<br>0,197  | 0, 136<br>0.147  | <0,020             | <0,010           | 0,024<br><0,010  | 0,200          | <0,030          | <0,092             |
|                                                   |               | Indéno (1,2,3 cd) pyrène            | mg/kg MS             |             | 0,137           | <0,011           | 0,197           | 0,147            | <0,010             | <0,010           | <0,010           | 0,012          | 0,010           | 0,019              |
|                                                   |               | Anthracène<br>Acénaphtène           | mg/kg MS<br>mg/kg MS |             | <0,014          | <0,010           | 0,023           | 0,013            | <0,010             | <0,010           | <0,010           | 0,012          | <0,012          | <0,019             |
|                                                   |               | Chrysène                            | mg/kg MS             |             | 0,174           | 0,044            | 0,315           | 0,023            | 0,026              | <0,010           | 0,050            | 0,373          | 0,088           | 0,061              |
|                                                   |               | Dibenzo (a,h) anthracène            | mg/kg MS             |             | 0,019           | <0,010           | <0,010          | <0,010           | <0,010             | <0,010           | <0.010           | <0,010         | <0,010          | <0,010             |
|                                                   |               | Fluorène                            | mg/kg MS             |             | <0,010          | <0,010           | <0,010          | <0,010           | <0,010             | <0,010           | <0,010           | <0,010         | <0.010          | <0,010             |
|                                                   |               | Naphtalène                          | mg/kg MS             |             | <0,010          | <0,010           | <0,010          | <0,010           | <0,010             | <0,010           | <0,010           | <0,010         | <0.010          | <0,010             |
|                                                   |               | Pyrène                              | mg/kg MS             |             | 0,189           | 0,031            | 0,277           | 0,188            | 0,024              | <0,010           | 0,054            | 0,266          | 0,089           | 0,062              |
|                                                   |               | Phénanthrène                        | mg/kg MS             |             | 0,115           | 0,016            | 0,168           | 0,104            | 0,019              | <0,010           | 0,061            | 0,214          | 0,062           | 0,052              |
|                                                   |               | Benzo (a) anthracène                | mg/kg MS             |             | 0,119           | 0,029            | 0,192           | 0,146            | 0,015              | <0,010           | 0,033            | 0,202          | 0,068           | 0,029              |
|                                                   |               | Somme des 16 HAP identifiés         | mg/kg MS             | <50         | <1,622          | <0,248           | <2,423          | <1,764           | <0,196             | <0,01            | <0,398           | <2,713         | <0,624          | <0,516             |
|                                                   | Granulométrie | Argiles                             | % < 2 µm             |             | 22,700          | 2,200            | 10,900          | 11,100           | 3,100              | 1,400            | 2,300            | 1,400          | 3,600           | 1,500              |
|                                                   |               | Limons fins                         | % 2-20 µm            |             | 40,200          | 2,400            | 14,400          | 20,200           | 5,600              | 1,600            | 2,300            | 2,400          | 5,700           | 4,800              |
|                                                   |               | Limons grossiers                    | % 20-50 µm           |             | 20,900          | 0,800            | 12,900          | 13,200           | 2,400              | 0,300            | 0,500            | 0,400          | 0,900           | 0,900              |
|                                                   |               | Sables fins                         | % 50-200 μm          |             | 6,300           | 2,600            | 27,600          | 13,600           | 2,100              | 2,200            | 2,600            | 1,000          | 2,800           | 3,400              |
|                                                   |               | Sables grossiers                    | % 200 µm -2          |             | 9,800           | 92,000           | 34,300          | 41,900           | 86,800             | 94,600           | 92,400           | 94,900         | 86,900          | 89,400             |
|                                                   | MET LIX       | Antimoine lixiviable                | mm<br>mg/kg MS       | <0,06       | <0,020          | <0,020           | <0,020          | <0,020           | <0,020             | <0,020           | 92,400<br><0,020 | <0,020         | <0,020          | <0,020             |
| Test sur la par-<br>tie liquide du<br>prélèvement | WILT LIX      | Arsenic lixiviable                  | mg/kg MS             | <0,00       | 0,04            | <0,02            | 0,06            | <0,020           | <0,02              | <0,02            | <0,020           | <0,02          | <0,02           | 0,020              |
|                                                   |               | Baryum lixiviable                   | mg/kg MS             | <20         | 0,30            | 0,33             | 0,91            | 0,45             | 0,39               | 0,33             | 0,28             | 0,43           | 0,38            | 0,66               |
|                                                   |               | Cadmium lixiviable                  | mg/kg MS             | <0.04       | <0,01           | <0,01            | <0,01           | <0,01            | <0,01              | <0,01            | <0,01            | <0,01          | <0,01           | <0,01              |
|                                                   |               | Chrome lixiviable                   | mg/kg MS             | <0,5        | <0,05           | <0,05            | <0,05           | <0,05            | <0,05              | <0,05            | <0,05            | <0,05          | <0,05           | <0,05              |
|                                                   |               | Cuivre lixiviable                   | mg/kg MS             | <2          | <0,10           | <0,10            | <0,10           | <0,10            | <0,10              | <0,10            | <0,10            | <0,10          | <0,10           | <0,10              |
|                                                   |               | Mercure lixiviable                  | mg/kg MS             | <0,01       | <0,010          | <0,010           | <0,010          | <0,010           | <0,010             | <0,010           | <0,010           | <0,010         | <0,010          | <0,010             |
|                                                   |               | Molybdène lixiviable                | mg/kg MS             | <0,5        | <0,05           | <0,05            | <0,05           | <0,05            | <0,05              | <0,05            | <0,05            | <0,05          | <0,05           | <0,05              |
|                                                   |               | Nickel lixiviable                   | mg/kg MS             | <0,4        | <0,05           | <0,05            | <0,05           | <0,05            | <0,05              | <0,05            | <0,05            | <0,05          | <0,05           | 0,060              |
|                                                   |               | Plomb lixiviable                    | mg/kg MS             | <0,5        | <0,020          | <0,020           | <0,020          | <0,020           | <0,020             | <0,020           | <0,020           | <0,020         | <0,020          | <0,020             |
|                                                   |               | Sélénium lixiviable                 | mg/kg MS             | <0,1        | <0,05           | <0,05            | <0,05           | <0,05            | <0,05              | <0,05            | <0,05            | <0,05          | <0,05           | <0,05              |
|                                                   | DTEV          | Zinc lixiviable                     | mg/kg MS             | <4          | 0,10            | 0,16             | 0,28            | 0,17             | 0,14               | <0,10            | 0,14             | 0,19           | 0,23            | 0,18               |
|                                                   | BTEX          | Benzène                             | mg/kg MS             |             | 0,087<br>0,430  | <0,013<br><0,065 | 0,032<br>6,256  | <0,017<br>0,350  | <0,013<br><0,065   | 0,029<br>0,149   | <0,013<br><0,064 | 0,082<br>0,351 | 0,024<br><0,065 | <0,013<br><0,065   |
|                                                   |               | Toluène<br>Ethylhenzène             | mg/kg MS             |             | <0,023          | <0,065<br><0,013 | 6,∠56<br><0,017 | 0,350<br><0,017  | <0,065<br><0,013   | 0,149<br><0,013  | <0,064<br><0,013 | <0,013         | <0,065          | <0,065             |
|                                                   |               | Ethylbenzène<br>Xylène ortho        | mg/kg MS<br>mg/kg MS |             | <0,023          | <0,013           | <0,017          | <0,017<br><0,017 | <0,013             | <0,013           | <0,013           | <0,013         | <0,013          | <0,013             |
|                                                   |               | Xylènes (m + p)                     | mg/kg MS             |             | <0,023          | <0,013           | <0,017          | <0,017           | <0,013             | <0,013           | <0,013           | 0,042          | <0,013          | <0,013             |
|                                                   |               | Somme BTEX                          | mg/kg MS             | <6          | <0,609          | <0,130           | 6,356           | <0,435           | <0,13              | <0,23            | <0,129           | <0,501         | <0,141          | <0,13              |
|                                                   | PHYS B        | Carbone organique (C)               | g/kg MS              | <30         | 24,200          | <5               | 14,80           | 14,50            | 6,400              | <5               | <5               | <5             | <5              | <5                 |
|                                                   |               | Fraction soluble                    | mg/kg MS             | <4000       | 2381,000        | <1000            | 1880,000        | 1802,000         | 1081,000           | <1001            | 1001,000         | 1001,000       | 1001,000        | <1001              |
|                                                   |               | Indice hydrocarbures C10-C40        | mg/kg MS             | <500        | 55,000          | <25              | 31,000          | 27,000           | <25                | <25              | <25              | <25            | <25             | <25                |
|                                                   | PHYS LIX      | Carbone organique (C) sur lixiviat  | mg/kg MS             | <500        | 50,000          | 16,000           | 47,000          | 32,000           | 26,000             | <10              | 16,000           | 22,000         | 18,000          | 31,000             |
|                                                   |               | Fluorures lixiviables               | mg/kg MS             | <10         | <0,5            | <5,0             | <5,0            | <5,0             | <5,0               | <5,0             | <5,0             | <5,0           | <5,0            | <5,0               |
|                                                   |               | Indice phénol sur lixiviat          | mg/kg MS             | <1          | <0,2            | <0,2             | <0,2            | <0,2             | <0,2               | <0,2             | <0,2             | <0,2           | <0,2            | <0,2               |
|                                                   |               | ent à draguer (inertes ou non, dang | aroux ou non)        |             | Déchet inerte   | Déchet inerte    | Déchet inerte*  | Déchet inerte    | Déchet inerte      | Déchet inerte    | Déchet inerte    | Déchet inerte  | Déchet inerte   | Déchet inerte      |

Légende



En-dessous du seuil de mise en décharge CSDU 3
Au-dessus du seuil de mise en décharge CSDU 3
\*: L'incertitude sur la mesure des BTEX, la valeurde BTEX faiblement supérieure au seuil et le fait qu'aucun autre seuil ne soit dépassé amène à considérer le déchet comme inerte